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Polymeric Micelles: Nanocarriers for Cancer-Targeted Drug Delivery
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Abstract. Polymeric micelles represent an effective delivery system for poorly water-soluble anticancer
drugs. With small size (10–100 nm) and hydrophilic shell of PEG, polymeric micelles exhibit prolonged
circulation time in the blood and enhanced tumor accumulation. In this review, the importance of rational
design was highlighted by summarizing the recent progress on the development of micellar formulations.
Emphasis is placed on the new strategies to enhance the drug/carrier interaction for improved drug-
loading capacity. In addition, the micelle-forming drug-polymer conjugates are also discussed which have
both drug-loading function and antitumor activity.
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INTRODUCTION

Chemotherapeutic agents are typically water-insoluble,
and their therapeutic outcome is compromised by the short
circulation time and systemic toxicity. During the past century,
tremendous efforts have been made to circumvent these
limitations and improve the therapeutic benefit of antican-
cer therapeutics. This was originated from the concept of
“magic bullet” that was proposed by Paul Ehrlich, recipient
of the Nobel Prize for Physiology or Medicine in 1908,
which suggests the benefit of targeted delivery of drug to
the diseased cells. In the past decades, nanocarriers have
emerged as an attractive research field in cancer therapy,
including liposomes, micelles, and nanoparticles made of
various materials. Polymeric micelles are extensively
studied carriers for the delivery of poorly water-soluble
drugs. By enhancing the aqueous solubility and prolonging
the blood half-life of chemotherapeutic agents, the anti-
cancer agents can passively accumulate in the tumor site
through the leaky vasculature via the enhanced permeabil-
ity and retention (EPR) effect (1,2). Compared with oth-
er drug carriers, micelles have the advantages of very
small size (10–100 nm), which is critical for passive
targeting to solid tumors, particularly the poorly vascularized
tumors (3).

Based on the type of intermolecular forces driving the
micelle formation, block copolymer micelles can be divided
into several categories including hydrophobically assembled

amphiphilic micelles, polyion-complex micelles, and micelles
stemming from metal complexation (4). The hydrophobically
assembled micelles usually consist of amphiphilic macromole-
cules that have distinct hydrophobic and hydrophilic domains,
and the commonly used block segments of copolymers have
been summarized (5). Upon exposure to aqueous medium, the
amphiphilic molecules are spontaneously self-assembled into
supramolecular core/shell structures, and water-insoluble
drugs can be loaded into the hydrophobic cores.

Micelles have demonstrated a variety of shapes such as
spheres, rods, vesicles, tubules, and lamellae depending on the
relative length of hydrophobic/hydrophilic blocks as well as
solvent environment (6–8). Morphology of micelles has signif-
icant impact on the pharmacokinetic properties of micelles.
For example, worm-like filomicelles have shown ten times
longer circulation time compared with the spherical counter-
part made of similar material (9).

The most commonly used hydrophilic segment of micelles
for drug delivery is poly (ethylene glycol) (PEG), with a
molecular weight of 2–15 kDa. PEG is highly water-soluble,
non-toxic and neutrally charged. PEG forms a hydrophilic
corona on the surface of micelles which minimizes the non-
specific interaction with blood components and prolongs the
circulation time. Besides PEG, other polymers including
poly(N-vinyl pyrrolidone) (PVP) (10) and poly(N-isopropyl
acrylamide) (pNIPAM) (11) have also been used as hydro-
philic portion of micelles.

Most polymeric systems involve the use of polymers as
the hydrophobic domain including polyesters such as
poly(lactic acid) (PLA) and polyamides such as poly (L-lysine)
(PLL) and poly (beta-amino ester). Biocompatibility and bio-
degradability are two important prerequisites in designing
these micellar carriers for clinical application. Polyesters and
polyamides undergo enzyme-catalyzed hydrolysis in vivo and
thus are considered biodegradable. There are several polymer
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micelle systems that have been studied in clinical phase (12).
For example, Genexol-PM, a polymeric micelle formulation of
paclitaxel, was evaluated in a phase I study in patients with
advanced malignancies with emphasis on pharmacokinetics
evaluation (13). Phase II clinical trial of Genexol-PM was
performed in patients with metastatic breast cancer (14) and
advanced non-small-cell lung cancer (15). Some other micellar
formulations also have their phase I clinical trial completed,
including paclitaxel-incorporated micellar formulation,
NK105 (16), pluronic polymer-bound doxorubicin (SP1049C)
(17) and NK911, a micelle-encapsulated doxorubicin (18).

Another type of polymeric micelles that have been inves-
tigated involves the use of lipids as the hydrophobic core. For
example, Torchilin’s group has synthesized several PEG-
diacyllipid conjugates, in which the hydrophobic segments
are lipids of various acyl chains such as phosphatidylethanol-
amine (PEG-PE) (19). Due to the strong hydrophobic inter-
actions between the double acyl chains (20), the PEG-PE
conjugates can form stable micelles with very low CMC value
(~10−5 M) (21). These micelles can solubilize many types of
poorly water-soluble drugs including paclitaxel (2), tamoxifen
(2), porphyrin (2), camptothecin (22), and vitamin K3 (23).
The PEG-PE micelles exhibit favorable stability, longevity in
blood and tumor accumulation via the EPR effect (20,24). In
contrast to liposomes (25), the small size of micelles enables
them to effectively penetrate the vasculature of tumors, even
for those with very low cutoff size (26).

Recently, Lam and colleagues have developed a series of
micellar systems composed of PEG-cholic acid (CA) conju-
gates (27). A conjugate of eight CA molecules with one
PEG5000 chain (PEG5K-CA8) was shown to load paclitaxel
with high loading capacity (7.3 mg paclitaxel/mL) and a size of
20–60 nm (27). These paclitaxel-loaded PEG5K-CA8 micelles
achieved improved antitumor effect and showed less toxicity
in murine models of ovarian cancer compared to Taxol® and
Abraxane® at equivalent paclitaxel doses (27). Phase I clini-
cal trial of paclitaxel-loaded PEG5K-CA8 micelles demonstrat-
ed the superior anticancer efficacy and tolerance (28). In
addition, compared to PEG5K-CA8 micelles, a similar micellar
carrier PEG2K-CA4 was demonstrated to have higher doxoru-
bicin loading capacity and more sustained drug release profile
(28).

The last decade has seen significant progress in the
development of various micellar systems for targeted de-
livery of anticancer agents (5,29,30). However, much im-
provement is still needed for the existing systems with
respect to drug-loading capacity and formulation stability.
Despite the structural differences among the reported mi-
cellar systems, most of them mainly rely on hydrophobic/
hydrophobic interaction for drug incorporation into the
hydrophobic cores. Such mechanism, while working well
for some highly lipophilic drugs, may not provide suffi-
cient drug/carrier interaction to effectively load other
drugs. Various strategies have been proposed to introduce ad-
ditional drug-interactive domains into the micellar system to
improve the overall carrier/drug interaction. In addition, prog-
ress has been made in developing dual-functional carriers that
demonstrate both delivery function and antitumor activity. The
following two sections will summarize some of the works from
our lab and other labs on developing improved micellar systems
for anticancer agents.

MICELLES WITH BUILT-IN DRUG-INTERACTIVE
DOMAIN AS IMPROVED DELIVERY SYSTEMS
FOR ANTICANCER AGENTS

The drug-loading capacity of polymeric micelles is criti-
cally dependent on the compatibility between the drug and the
micelle core (31). A series of studies have demonstrated that
the drug-loading capacity of micelles can be greatly enhanced
by optimizing chemical structures of the inner core segment
for stronger drug/carrier interaction. A typical example of the
strategy for enhanced compatibility between drug and block
copolymer is the development of hydrotropic polymers.
Hydrotropy refers to a phenomenon that the aqueous solubil-
ity of a poorly soluble compound is significantly enhanced by
the presence of large amounts of a second solute, named
hydrotrope (32). The hydrotropes aggregate only above a
certain concentration, which is known as the minimal
hydrotrope concentration (MHC) (33). Various studies have
been carried out to elucidate the process of hydrotropic solu-
bilization. Although the exact mechanism is not fully clarified,
it may involve multiple non-covalent interactions including
hydrophobic interaction, hydrogen bonding (34) as well as
parallel stacking effect (35,36).

Most of the hydrotropes include an aromatic ring
substituted by heteroatoms. The aromatic rings are basically
hydrophobic, which can stack with each other or with the
benzene rings in drug molecules (37). In addition, the polar
groups may interact with drugs via hydrogen bonding (38).
For example, nicotinamide, a typical hydrotrope, has been
shown to form complexes with various hydrophobic drugs
and enhance their water solubility (39). It has a pyridine ring
that promotes the π-π stacking with drug molecules through
its planarity (40). In addition, self-association of nicotinamide
was shown to play a major role in the hydrotropic solubiliza-
tion of riboflavin instead of complexation between the two
species (32). Another example is N,N-diethylnicotinamide,
which was shown to be the most effective hydrotrope for
solubilizing paclitaxel among more than 60 structures tested
(41). One drawback of hydrotropic solubilization is that high
concentration of hydrotrope is usually required, which may
cause various side effects. This is due to the high MHC of
usual hydrotropes of about 1 M, compared to the critical
micelle concentration (CMC) of typical micelles at 10−2–
10−3 M (42). To overcome this barrier, hydrotropic polymers
have been developed which can dramatically enhance the
local concentration of hydrotropes. Park’s group has
synthesized PEG block copolymers with hydrotropes linked
with the hydrophobic domain of polymeric micelles, which
appeared to be a versatile strategy to enhance the water
solubility of various hydrophobic drugs of different
structures (43,44). The key factors that affect the
performance of hydrotropic polymers include the polymer
backbone, type and orientation of hydrotropic moieties and
the spacer groups connecting the backbone and hydrotropes.
The review by Ooya et al. provides a comprehensive summary
of the studies regarding the structure-activity relationship of
hydrotropic polymers (36).

Besides hydrotropic effect, additional non-covalent inter-
actions have been employed to improve drug-loading in poly-
meric micelles. For example, modification of poly(ethylene
glycol)-poly(beta-benzyl L-aspartate) (PEG-PBLA) block
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copolymer with benzyl ester on the PBLA chain enhanced the
loading efficiency and stability of camptothecin-loaded mi-
celles (45). Incorporation of hydrogen bonding urea-function-
al groups into block copolymers led to decreased CMC and
improved stability of doxorubicin-loaded micelles (46).
Similarly, the stability of micelles was enhanced with increased
number of acid/urea groups in the micelles, which was due to
improved hydrogen bonding between the carrier molecules
and acid-amine ionic interaction between the drug and carrier
(47). In addition, the loading of indomethacin and ibuprofen
into polymeric micelles was dramatically improved by the
acid-base interaction between hydrophobic segments of mi-
celles and guest molecules containing carboxylic acid groups
(48). Furthermore, Kataoka’s group has shown that the en-
capsulation of cisplatin into polymeric micelles was facilitated
by metal-ligand coordination (49,50). Inclusion of aromatic
end groups (e.g. benzoyl and naphthoyl) has also been shown
to improve the loading of paclitaxel into mPEG750-b-
oligo(epsilon-caprolactone)5-based oligomeric micelles (51).

We have recently demonstrated that the introduction of
Fmoc as a “drug-interactive domain” can also significantly
improve the drug-loading capacity of both emulsion and lip-
id-core micellar system (52). A series of PEGylated
lipopeptide surfactants were designed and constructed to sol-
ubilize a synthetic antioxidant, JP4-039. Several ε-Boc lysine
derivatives with various protective groups at α-NH2 position
were tested for their ability to solubilize JP4-039, among which
the α-Fmoc-ε-Boc lysine was shown to be the most potent one
(52). Incorporation of this drug-interactive motif Fmoc into
drug-loaded emulsion led to significant increase in the formu-
lation stability. We then designed another polymer-based mi-
celle system, in which the Fmoc motifs were located at the
interfacial region of lipopeptide surfactants with PEG5K as the
headgroup and two oleoyl chains as the core-forming segment
(53) (Fig. 1). The PEG5K-(Fmoc-OA)2 exhibited lower CMC
value and significantly improved loading capacity for paclitax-
el compared with an analogue without Fmoc motifs. The
paclitaxel-loaded PEG5K-(Fmoc-OA)2 micelles showed in-
creased anticancer effect over Taxol in vitro and in vivo. In
addition, seven other drugs were effectively loaded into
PEG5K-(Fmoc-OA)2 micelles, which suggests the utility and
versatility of this platform for a broad range of drugs with
different structures (53). Although the exact mechanism of
carrier/drug interaction is not fully understood, the hydropho-
bic interaction and π-π stacking effect possibly contribute to
the compatibility between the drug and carrier (Fig. 1).

PEG-DRUG CONJUGATES AS DUAL-FUNCTION
CARRIERS FOR CANCER TARGETED DELIVERY

Rationale of Combination Therapy Using Polymer-Drug
Conjugates as Carriers

As discussed above, improved drug-loading capacity, sta-
bility and tumor-specific distribution can be achieved by var-
ious strategies. However, most of the polymeric materials for
drug delivery are “inert” and lack of therapeutic activity. In
addition, the use of large amounts of carrier materials may
impose safety concerns (54). Since Ringsdorf (55) proposed
the concept of “polymeric prodrug” in 1975, the utility of
polymer-drug conjugates in clinical therapy has been well

demonstrated. Interestingly, the conjugate of hydrophobic
drug with hydrophilic polymers might be self-assembled into
micelles, which can be potentially useful for the loading of
another therapeutic molecule. Drug encapsulation with a bio-
logically active carrier is an attractive strategy as it represents a
unique form of combination. Combination therapy with multi-
ple agents working at several signaling pathways at the same
time could not only lead to maximized anticancer effect but also
help to overcome the drug resistance (56). For example, the
combination of PGA-paclitaxel conjugate with cisplatin (57) or
carboplatin (58) has shown improved therapeutic benefits or
reduced toxicity in Phase I clinical trial. In addition, the antican-
cer effect of N-(2-hydroxypropyl)methacrylamide (HPMA) co-
polymer-doxorubicin conjugate in combination with HPMA
copolymer-mesochlorin e6 was shown to be more efficacious
than either conjugate alone (59).

In contrast to the common combination regimen, drug-
loading with bioactive carriers ensures the simultaneous arriv-
al of multiple therapeutic agents at the same targeting site, and
thus represents a promising strategy for better therapeutic
outcome. These dual-function carriers not only deliver the
drug to tumor site but also are biologically effective, which
either enhances the therapeutic effect (60) or reduce the
toxicity caused by the incorporated drug (61).

However, micellar systems based on drug-polymer conju-
gates are rarely used for the physical incorporation of another
hydrophobic molecule. The following section summarizes
some of the recent works from us and others, which demon-
strate that such a strategy is not only feasible but also
effective.

PEG-Vitamin E Conjugates as Dual-Function Carriers
for Cancer-Targeted Delivery

D-α-tocopheryl polyethylene glycol (PEG) 1,000 succi-
nate (TPGS) is a PEG-derivatized natural vitamin E which
has been approved by FDA as a safe pharmaceutical adjuvant
for drug formulation. In recent years, the application of TPGS
in drug formulations has been extensively studied, such as
emulsifier in poly (lactic-co-glycolic acid) (PLGA) nanoparti-
cles (62), solubilizer and permeation enhancer (63), TPGS-
based liposomes (64), copolymers (65), and nanocrystal (66).
By inhibiting the function of P-glycoprotein (P-gp), TPGS also
helps to overcome the multidrug resistance (67) and enhance
the oral bioavailability of anticancer drugs (68). In addition,
TPGS-doxorubicin conjugate was developed as a prodrug for
enhanced therapeutic effect (69).

TPGS forms micelles in aqueous solution, which were
used for the dispersion of functional nanostructures such as
carbon nanotubes (70,71), fullerenes (71), and iron oxide (72).
However, with a relatively high critical micelle concentration
(CMC) value of 0.2 mg/mL (73), TPGS micelles are not stable
and easily dissociated upon dilution by plasma after intrave-
nous injection. Therefore, TPGS is usually used together with
other excipients to form mixed micelles. For example, PEG-
phosphatidylethanolamine (PEG-PE) was mixed with TPGS
at a molar ratio of 2:1 for the loading of camptothecin (CPT),
which increased the CPT solubility by at least 50% compared
to PEG-PE micelles without TPGS (74). Similarly, mixed
micelles of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-
N-[methoxy(polyethylene glycol)-1,000] (DSPE-PEG) with
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TPGS were prepared to encapsulate an anticancer agent, 17-
allyamino-17-demethoxygeldanamycin (17-AAG) (75),
resulting in controlled drug release and improved cytotoxicity
compared with the free drug. In addition, TPGS also forms
mixed micelles with Pluronic P105 (76), Pluronic P123 (77),
and Pluronic F127/poly(butyl cyanoacrylate) (PBCA) (78).
Compared with free drug or micelles without TPGS, those
micelles showed improved solubility of hydrophobic antican-
cer drugs and increased cytotoxicity against MCF-7, MCF-7/
ADR and HepG2 cell lines.

To further facilitate the use of TPGS as a micellar formu-
lation, several strategies have been developed to decrease its
CMC. Feng’s group has conjugated one tocopheryl succinate
molecule with a PEG2K chain to generate TPGS2K for the
delivery of docetaxel, which showed much lower CMC value
compared with traditional TPGS (60). This improvement has
enabled the formation of stable drug-loaded TPGS micelles
without the help of other polymers or lipids. Another benefit
of longer PEG chain is to further decrease the nonspecific
uptake of TPGS2K micelles by RES. The study by Wang
et al. showed that a conjugate of PEG2K with two vitamin E
molecules exhibited further reduced CMC of 1.14 μg/mL (79),
compared to that of TPGS2K (21.9 μg/mL) and TPGS (200 μg/
mL) (60). Importantly, PEG2K-Vitamin E2 well retained the
intrinsic activity of TPGS in inhibiting the activity of P-gp.
Doxorubicin-loaded TPGS2K micelles showed greater cyto-
toxicity and tumor inhibitory effect than doxorubicin formu-
lated in conventional TPGS (79). In light of this information,
we have recently developed four PEG/vitamin E conjugates
that differ in PEG molecular weight (PEG2K vs PEG5K)
and the molar ratio of PEG/vitamin E (1/1 vs 1/2), and
their paclitaxel loading capacity was subsequently com-
pared (80). Our data have shown that among all the four
conjugates, PEG5K conjugate with two vitamin E mole-
cules (PEG5K-VE2) showed the lowest CMC value, with
highest loading capacity and stability. All the four conju-
gates retained the P-gp inhibition activity of TPGS.
Delivery of paclitaxel via PEG5K-VE2 led to significantly
improved antitumor activity compared with the commer-
cial formulation Taxol® and other paclitaxel micellar for-
mulations (Fig. 2).

PEG-Derivatized Embelin as a Nanocarrier for the Delivery
of Paclitaxel

Embelin is an alkyl-substituted hydroxyl benzoquinone
natural product discovered from the Japanese Ardisia Herb
(Herba Ardisiae Japonicae) (81). Embelin was shown to pos-
sess a broad spectrum of biological activities including antidi-
abetic (82), anti-inflammatory (83), and hepato-protective
effects (84). In addition, embelin exhibits antitumor activity
in many types of cancers such as breast (85), colon (86),
prostate (87), and pancreatic cancer (88). Through computa-
tional structure-based computer screening, Wang et al. (81)
discovered that embelin is a potent inhibitor of X-linked in-
hibitor of apoptosis protein (XIAP), which partially explained
its anticancer mechanism. XIAP is over-expressed in various
types of cancer cells (89), particularly in drug-resistant cancer
cells (90), while it plays a minimal role in normal cells.

Fig. 1. Structure of PEG5000-Lys-(α-Fmoc-ε-oleoyl lysine)2 and the postulated modes of carrier/drug and carrier/carrier interactions. Taken
with permission from (53)

Fig. 2. Enhanced antitumor activity of PTX formulated in PEG5K-
VE2 micelles. BALB/c mice were inoculated s.c. with 4T1.2 cells (2×
105 cells/mouse). Five days later, mice received various treatments on
days 1, 3, 5, 9, 12, and tumor growth was monitored and plotted as
relative tumor volume (mm3). P<0.02 (PEG5K-VE2/PTX vs. Taxol,
PEG2K-VE/PTX or PEG2K-VE2/PTX). N=5. Taken with permission
from (80)
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Inhibition of XIAP has been demonstrated as an effective
approach to selectively inhibit the growth of cancer cells
(91). Embelin also inhibits NF-κB activation, which mediates
the downregulation of several genes including surviving,
XIAP, IAP1/2, TRAF1, cFLIP, Bcl-2 and Bcl-xL (92).

Bearing a long lipophilic chain, embelin is extremely
hydrophobic and water-insoluble. In an attempt to explore
the PEG modification as an approach to increase its water
solubility, we have found that PEG-derivatized embelin forms
micelles in aqueous solution (93). This is not a surprise con-
sidering the structural similarity between embelin and vitamin
E (Fig. 3a–b). Interestingly, the antitumor activity of embelin
was well retained after coupling with PEG chain (93). In
addition, the PEG-embelin micelles are highly efficient in
solubilizing various types of anticancer agent such as paclitax-
el (93,94). Furthermore, PEG-embelin, at nanomolar range,
showed synergistic effect with paclitaxel in several cancer cell
lines tested (93). In vitro and in vivo studies have shown that
the conjugate with two embelin molecules linked with one
PEG chain is significantly more effective for loading paclitaxel
than the conjugate with a 1:1 molar ratio of PEG and embelin.
In addition, the PEG-embelin conjugates with longer PEG
chain (PEG5K) were shown to be more advantageous com-
pared with the counterparts with shorter PEG chain
(PEG3.5K) (93,94). Near-infrared fluorescence (NIRF) imag-
ing of PC-3 xenograft-bearing mice showed that PEG5K-EB2

micelles were selectively accumulated at tumor site with min-
imal distribution in major organs including liver and spleen
(Fig. 4) (94). Delivery of paclitaxel via PEG5K-embelin2 mi-
celles leads to superior antitumor activity compared to Taxol
in murine models of breast and prostate cancers (94).

PEG-Farnesylthiosalicylate (PEG-FTS) Conjugate Micelles
for the Delivery of Paclitaxel

S-trans,trans-farnesylthiosalicylic acid (Salirasib, or FTS)
is a synthetic antagonist of Ras protein. By disrupting the
anchorage of Ras on cell membrane (95), FTS is designed to

inhibit Ras-dependent growth of cancer cells. Approximately
20% to 30% of human tumors express permanently active
oncogenic Ras (96), and the mutationally activated Ras was
most commonly found in adenocarcinomas of the pancreas
(90%), colon (50%), lung (30%), thyroid tumors (50%), and
myeloid leukemia (30%) (97,98). Accordingly, FTS exhibited
potent antitumor effect in various tumors such as pancreatic
cancer (95), colon cancer (99), melanoma (100), and neurofi-
bromatosis (101). In addition, Ras inhibitors demonstrated
synergistic effect with other chemotherapeutics, which validat-
ed their application in combination therapy (102). For exam-
ple, treatment of the resistant SW480 cells with FTS
dramatically enhanced the sensitivity to gemcitabine and led
to improved inhibition of tumor growth in vivo (103).

Similar to vitamin E and embelin, FTS is also a hydro-
phobic small molecule with a long hydrophobic chain and a
functional group (–COOH) that can be readily used for fur-
ther modification (Fig. 3c). The biological activity and chem-
ical structure of FTS has prompted us to design the PEG-
derivatized FTS conjugate as another dual-function micellar
drug carrier (104). A labile ester linkage was used to facilitate
the release of FTS and disassembly of the drug-loaded mi-
celles following intracellular delivery to tumor cells. Our data
have shown that the PEG-FTS2 readily forms micelles in
aqueous solution with a CMC of 0.68 μM. Paclitaxel can be
efficiently loaded into those micelles, which are spherical in
morphology with a uniform size of 20–30 nm. Ras protein
downregulation (Fig. 5) and cytotoxicity of PEG-FTS2 were
comparable to free FTS as shown in 4T1.2 and HCT-116
cancer cell lines. The antitumor activity of paclitaxel-loaded
PEG-FTS2 micelles was shown to be significantly higher than
that of Taxol in a syngeneic murine breast cancer model (104).

Other Drug-Polymer Conjugate Micelles for the Delivery
of a Hydrophobic Chemotherapeutics

Several other micellar systems have been studied, which
are based on polymer-drug conjugates such as polymer-
curcumin and polymer-adriamycin conjugates. Curcumin is a
natural polyphenol compound with promising anticancer ap-
plication (105,106). It was reported that curcumin blocks NF-
κB pathway (107) and in turn, induces apoptosis and inhibits
the function of protein kinase C, epidermal growth factor
receptor tyrosine kinase, and HER-2 (108,109). Curcumin
has shown antitumor activity against various types of cancers
including those of breast (110), colon (111), prostate (112,113),
kidney (114), liver (115), lymphoid and myeloid tissues (116),
and melanoma (117). In spite of all the anticancer activities,
the potential application of curcumin is hindered by its poor
water solubility and limited bioavailability. Furthermore, high
drug dose is required for a desired therapeutic outcome due to
its relatively low potency. Therefore, nano-sized delivery sys-
tems with high loading capacity and tumor-specific distribu-
tion represent an attractive strategy to address these issues.

In an attempt to increase the solubility of curcumin,
various formulations have been developed such as cyclodex-
trin (118), nanoparticles (119), microparticles (120) and nano-
sized complex (121). Polymer-curcumin conjugates were also
synthesized as polymeric prodrugs. For example, Safavy et al.
synthesized two conjugates including curcumin-PEG750 and
curcumin-PEG3.5K (122). Both conjugates exhibited enhancedFig. 3. Chemical structures of vitamin E (a), embelin (b) and FTS (c)
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water solubility and cytotoxicity against several human cancer
cell lines in comparison with free curcumin (122). To further
increase the drug content in the nanoparticles, Tang et al.
synthesized a curcumin prodrug by attaching it with two short
oligo (ethylene glycol) (Curc-OEG) chains. Beta-thioester
bond was applied which can be selectively cleaved intracellu-
larly by glutathione and esterase to release the drug (123).
With a curcumin loading content of 25.3 wt.%, the Curc-OEG

conjugate formed stable nanoparticles in aqueous solution and
exhibited dramatic anticancer effect in vitro and in vivo with-
out causing significant toxicity (123). Curcumin-polymer con-
jugates were also synthesized with hyaluronic acid (124) and
polyvinylpyrrolidone (125). Most recently, Yang et al. (126)
demonstrated that the covalent curcumin-polymer conjugates
can be further used to physically encapsulate additional
curcumin. Curcumin was loaded into the polymeric micelles,

Fig. 4. In vivo NIRF imaging over time as indicated in prostate cancer. PC-3 xenograft-bearing mice at 2, 24, 48 h following
i.v. injection of PEG5K-EB2 micelles co-loaded with PTX and DiD. Taken with permission from (94)

Fig. 5. Effects of FTS, PEG5K-FTS2 (L), and PEG5K-FTS2 (S) on total Ras expression by western blot analysis. Cells grown
in medium containing 5% FBS were treated with 0.1% DMSO (control), PEG5K-FTS2 with liable linkage (L), PEG5K-FTS2
with stable linkage (S), and free FTS (at a FTS concentration of 10 μM), respectively, for 48 h. Total cell lysate was subjected
to western blot analysis. Anti-Ras antibody was used to determine the total Ras levels in the cells. Taken with permission
from (104)
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which were synthesized by attaching multiple curcumin mole-
cules to the hydrophobic poly (lactic acid) (PLA) backbone of
PEG-PLA copolymer. Such micelles exhibited ten times lower
CMC value and dramatically enhanced curcumin loading ca-
pacity (approximately fivefold) compared to traditional
mPEG-PLA micelles (126).

Yokoyama et al. has reported that adriamycin (ADR)-con-
jugated polyethylene glycol–poly(aspartic acid) block copoly-
mers (PEG-P[Asp(ADR)]) form micelles in aqueous solution
and exhibited dramatic antitumor activity in vivo (127–129).
However, the ratio of chemically/physically entrapped
adriamycin was not analyzed, and certain amounts of
adriamycin derivatives were incorporated in the micelles as
impurities, which may cause side effects (130). The micelle
preparation method was then improved which enabled the de-
termination of this ratio and reduced the amounts of impurities
(130,131). In addition, Yang et al. (132) developed a dual-drug
system in which doxorubicin was chemically linked to the PLA
end of polyethylene glycol-b-poly lactic acid (PEG-b-PLA).
This conjugate was mixed with RGD-PEG-b-PLA, PEG-b-
PLA and an antivascular agent combretastatin A4 to prepare
the micelles. This dual-drug system significantly enhanced cel-
lular uptake of the drug by B16-F10 cells and human umbilical
vein endothelial cells, and achieved significant antitumor effect
with increased lifespan of tumor bearing mice.

CONCLUSION AND FUTURE DIRECTIONS

Polymeric micelles have been extensively studied over
the last decade as versatile and efficient drug delivery systems
for cancer therapy. The design of polymer structure is increas-
ingly sophisticated to improve the drug-loading capacity, tu-
mor-specific uptake as well as anticancer effect. Various
strategies have been developed to increase the drug/carrier
interaction of polymeric micelles to maximize the drug-load-
ing capacity, such as hydrotropic polymers and Fmoc-conju-
gated surfactants. In addition, several biologically active
carriers have been developed as dual-functional carriers to
improve the anticancer effect. More systematic studies on
the structure-activity relationship of polymeric micellar sys-
tems are needed to better understand the mechanism of
drug/carrier interaction and the effect of polymer structure
on the drug-loading capacity. In addition, computational
modeling may offer help in the tailored design of a polymeric
carrier for each drug. These studies shall lead to the develop-
ment of further improved micellar systems to advance the
treatment of cancers.
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